Secureum Book
  • 🛡️Secureum Bootcamp
    • 🛡️Secureum Bootcamp
    • 🙌Participate
    • 📜History
  • 📚LEARN
    • Introduction
      • 🔷1. Ethereum Basics
        • 1.1 Ethereum: Concept, Infrastructure & Purpose
        • 1.2 Properties of the Ethereum Infrastructure
        • 1.3 Ethereum vs. Bitcoin
        • 1.4 Ethereum Core Components
        • 1.5 Gas Metering: Solving the Halting Problem
        • 1.6 web2 vs. web3: The Paradigm Shift
        • 1.7 Decentralization
        • 1.8 Cryptography, Digital Signature & Keys
        • 1.9 Ethereum State & Account Types
        • 1.10 Transactions: Properties & Components
        • 1.11 Contract Creation
        • 1.12 Transactions, Messages & Blockchain
        • 1.13 EVM (Ethereum Virtual Machine) in Depth
        • 1.14 Transaction Reverts & Data
        • 1.15 Block Explorer
        • 1.16 Mainnet & Testnets
        • 1.17 ERCs & EIPs
        • 1.18 Legal Aspects in web3: Pseudonymity & DAOs
        • 1.19 Security in web3
        • 1.20 web2 Timescales vs. web3 Timescales
        • 1.21 Test-in-Prod. SSLDC vs. Audits
        • Summary: 101 Keypoints
      • 🌀2. Solidity
        • 2.1 Solidity: Influence, Features & Layout
        • 2.2 SPDX & Pragmas
        • 2.3 Imports
        • 2.4 Comments & NatSpec
        • 2.5 Smart Contracts
        • 2.6 State Variables: Definition, Visibility & Mutability
        • 2.7 Data Location
        • 2.8 Functions
        • 2.9 Events
        • 2.10 Solidity Typing
        • 2.11 Solidity Variables
        • 2.12 Address Type
        • 2.13 Conversions
        • 2.14 Keywords & Shorthand Operators
        • 2.15 Solidity Units
        • 2.16 Block & Transaction Properties
        • 2.17 ABI Encoding & Decoding
        • 2.18 Error Handling
        • 2.19 Mathematical & Cryptographic Functions
        • 2.20 Control Structures
        • 2.21 Style & Conventions
        • 2.22 Inheritance
        • 2.23 EVM Storage
        • 2.24 EVM Memory
        • 2.25 Inline Assembly
        • 2.26 Solidity Version Changes
        • 2.27 Security Checks
        • 2.28 OpenZeppelin Libraries
        • 2.29 DAppSys Libraries
        • 2.30 Important Protocols
        • Summary: 201 Keypoints
      • 🔏3. Security Pitfalls & Best Practices
        • 3.1 Solidity Versions
        • 3.2 Access Control
        • 3.3 Modifiers
        • 3.4 Constructor
        • 3.5 Delegatecall
        • 3.6 Reentrancy
        • 3.7 Private Data
        • 3.8 PRNG & Time
        • 3.9 Math & Logic
        • 3.10 Transaction Order Dependence
        • 3.11 ecrecover
        • 3.12 Unexpected Returns
        • 3.13 Ether Accounting
        • 3.14 Transaction Checks
        • 3.15 Delete Mappings
        • 3.16 State Modification
        • 3.17 Shadowing & Pre-declaration
        • 3.18 Gas & Costs
        • 3.19 Events
        • 3.20 Unary Expressions
        • 3.21 Addresses
        • 3.22 Assertions
        • 3.23 Keywords
        • 3.24 Visibility
        • 3.25 Inheritance
        • 3.26 Reference Parameters
        • 3.27 Arbitrary Jumps
        • 3.28 Hash Collisions & Byte Level Issues
        • 3.29 Unicode RTLO
        • 3.30 Variables
        • 3.31 Pointers
        • 3.32 Out-of-range Enum
        • 3.33 Dead Code & Redundant Statements
        • 3.34 Compiler Bugs
        • 3.35 Proxy Pitfalls
        • 3.36 Token Pitfalls
        • 3.37 Special Token Pitfalls
        • 3.38 Guarded Launch Pitfalls
        • 3.39 System Pitfalls
        • 3.40 Access Control Pitfalls
        • 3.41 Testing, Unused & Redundand Code
        • 3.42 Handling Ether
        • 3.43 Application Logic Pitfalls
        • 3.44 Saltzer & Schroeder's Design Principles
        • Summary: 201 Keypoints
      • 🗜️4. Audit Techniques & Tools
        • 4.1 Audit
        • 4.2 Analysis Techniques
        • 4.3 Specification, Documentation & Testing
        • 4.4 False Positives & Negatives
        • 4.5 Security Tools
        • 4.6 Audit Process
        • Summary: 101 Keypoints
      • ☝️5. Audit Findings
        • 5.1 Criticals
        • 5.2 Highs
        • 5.3 Mediums
        • 5.4 Lows
        • 5.5 Informationals
        • Summary: 201 Keypoints
  • 🌱CARE
    • CARE
      • CARE Reports
  • 🚩CTFs
    • A-MAZE-X CTFs
      • Secureum A-MAZE-X
      • Secureum A-MAZE-X Stanford
      • Secureum A-MAZE-X Maison de la Chimie Paris
Powered by GitBook
On this page
  1. LEARN
  2. Introduction
  3. 3. Security Pitfalls & Best Practices

3.24 Visibility

Remember that functions in Solidity have the notion of visibility where they could be either public, external, internal or private, this affects which users can call these functions.

So public and external functions are callable by anyone depending on the access control that is enforced on top of that, whereas internal and private can be called only from within the contracts or the derived contracts.

Until Solidity version 0.5.0 this visibility specifier was optional and they defaulted to public. This aspect led to vulnerabilities where the developer forgot to mention or specify the visibility in which case it became public by default and resulted in malicious users being able to call these functions and make unauthorized state changes completely unexpected by the developer or the smart partner.

So this optional specification of function visibility defaulting to public visibility was removed as of Solidity version 0.5.2, so this was a big change when it came to increasing the security of smart contracts and since that version function visibility is required to be specified explicitly for every function.

Public Functions

Remember that Solidity has the notion of visibility for functions, there are four visibility specifiers: internal, private, public and external. public functions consume more Gas than external functions.

The reason for this is because the arguments of public functions need to be copied from thecall data component of the EVM to the memory component. This copying produces more bytecode for such public functions which therefore consumes more Gas.

This copying is not required for external functions where their arguments can be left behind in the calldata component of the EVM. This key difference leads to public functions consuming more Gas than external functions in Solidity.

So if there are functions in the contract that are never called from within the contracts themselves, then such functions should be declared with external visibility and not public visibility, which leads to better Gas efficiency.

Previous3.23 KeywordsNext3.25 Inheritance

Last updated 1 year ago

📚
🔏